Degree - The greatest exponent in a polynomial or equation.

Example:

*x*^{13}+ 5*x*^{3 }(Degree: 13)*h*^{5 }+*h*^{4}+*h*^{8}+*h*^{3}+*h*^{12}+*h*^{2}+*h*(Degree: 12)*y*= -5*b*+ 19 (Degree : 1; Note,*b*is raised to the 1^{st}power.)- ƒ(
*x*) = 5*x*^{9}- 5 (Degree: 9)

### Why is This Important?

- The degree of a function determines the most number of solutions that the function could have.
- The degree of a function determines the most number of times a function will cross the
*x*-axis.

### Examples

*y*=*x*(Degree: 1; Only 1 solution)*y*=*x*^{2}(Degree: 2; Two possible solutions)*y*=*x*^{3}(Degree: 3; Three possible solutions)